Multi-Paradigm Programming and Scripting

From Sinfronteras
Revision as of 15:16, 3 November 2019 by Adelo Vieira (talk | contribs) (Names - Variables)
Jump to: navigation, search


Why Multi-Paradigm Programming and Scripting?
  • Universal programming constructs (invariant of language), their functions, uses and how different paradigms/languages employ them.
  • Improved background for choosing appropriate languages:



Content of this course
Programming Constructs:
  • The compilation process
  • Data types (strongly-typed, weakly-typed)
  • Pointers
  • Variables and Invariants
  • Conditionals (Selection)
  • Sequence
  • Repetition
  • Routines
  • Concurrency
Programming Paradigms & Languages:
  • Abstraction (machine to very-high-level)
  • Mark-up
  • Imperative & Declarative
  • Procedural
  • Parallel & Concurrent
  • Functional
  • Event-Driven
  • Multi-Paradigm Languages
  • Interpreted Languages
  • Comparison of all to Object Oriented Paradigm
Scripting:
  • Interpreters and system commands
  • Shell Scripting (Linux/UNIX)
  • PowerShell Scripting (Windows)
  • System Programming & Scripting
Applications of Shell Scripting:
  • Job Control
  • Glue Code / Wrappers
  • Automating Tasks
  • Data Processing / Transformation
  • System uses
  • I/O tasks and functions



Some important programming concepts


High level - Low Level Programming


Compilation vs Interpretation

https://medium.com/@DHGorman/a-crash-course-in-interpreted-vs-compiled-languages-5531978930b6

https://guide.freecodecamp.org/computer-science/compiled-versus-interpreted-languages/


Speaking simplistically, compiled languages are those which are written in one language and, before being run, translated or "compiled" into another language, called the target language (typically in machine language that the processor can execute). Once the translation is complete, the executable code is either run or set aside to run later. Some common compiled languages include C, C++, Delphi and Rust.

The compiler translates the high-level source program into an equivalent target program (typically in machine language).


The alternative to using a compiler (for a compiled language) is using an interpreter (for interpreted languages). Interpreted languages are "interpreted" live in their original source code, although in reality they are merely compiled at runtime. What this allows for is a lot more flexibility, especially when it comes to a program adaptively modifying its structure. This flexibility does have a cost; interpreted languages are considered significantly slower.

Interpreters will run through a program line by line and execute each command.



Advantages and Disadvantages

Compiled Languages:

  • Advantages:
  • Programs compiled into native code at compile time usually tend to be faster than those translated at run time, due to the overhead of the translation process.
  • Disadvantages:
  • Additional time needed to complete the entire compilation step before testing, and Platform dependence of the generated binary code.


Interpreted Languages:

  • Advantages:
  • Greater flexibility
  • Better diagnostics (error messages)
  • An Interpreted language gives implementations some additional flexibility over compiled implementations. Because interpreters execute the source program code themselves, the code itself is platform independent (Java's byte code, for example). Other features include dynamic typing, and smaller executable program size.
  • Disadvantages:
  • The most notable disadvantage is typical execution speed compared to compiled languages.
Interpreted languages were once known to be significantly slower than compiled languages. But, with the development of just-in-time compilation, that gap is shrinking.



Phases of Compilation

Phases of compilation.png


  • Scanning:
  • Parsing:
  • Semantic analysis:
  • Intermediate form :
  • Optimization:
  • Code generation phase :



Procedural - Functional and Object-Oriented Programming

https://medium.com/@sho.miyata.1/the-object-oriented-programming-vs-functional-programming-debate-in-a-beginner-friendly-nutshell-24fb6f8625cc


Can we do Object-Oriented Programming with ANSI-C? Yes! this book explains how to do it: https://www.cs.rit.edu/~ats/books/ooc.pdf


https://www.codecademy.com/articles/cpp-object-oriented-programming

https://owlcation.com/stem/Use-Of-Object-Oriented-Programming

https://searchapparchitecture.techtarget.com/definition/object-oriented-programming-OOP

https://www.geeksforgeeks.org/object-oriented-programming-oops-concept-in-java/

http://ee402.eeng.dcu.ie/introduction/chapter-1---introduction-to-object-oriented-programming


Object-oriented programming (OOP) is a programming language paradigm structured around objects (which consists of both data and behaviors[Functions-Methods]). This is in contrast to conventional Functional programming paradigm that is structured based on actions (logic) and only loosely connects data and behaviors.


A traditional functional/procedural(*) program is structured based on actions (logic). In general, a functional program take an input data, process it and produces a result. In other words, the data, stored in variables, is passed to defined functions which perform some action and modify it or create new data. The program is centralized around the actions (logic):

  • Take input data
  • Process the data
  • Produces a result


The object-oriented paradigm allows us to structure the program as a collection of objects that consist of both data and behaviors[Functions-Methods]. So, in object-oriented programming, data and functions are tied together in an entity called object. We can said that one of the main aim of OOP is to bind together the data and the functions that operate on them so that no other part of the code can access this data except that function. These data in OOPs are known as properties and functions used to modify properties are called methods.


The object-oriented programming approach encourages:

  • Modularisation: where the application can be decomposed into modules.
  • Software re-use: where an application can be composed from existing and new modules.


Major benefits of using OOPs:

  • Encapsulation : Objects created in OOPs are able to hide certain parts of code from programmer. This prevents unintentional modification in the code which may cause unwanted outcomes.
  • Code Reuse : Objects created in OOPs can easily be reused in other programs.
  • Software Maintenance : Code written in OOPs is easy to debug and maintain.
  • Design Benefits : OOPs needs extensive design planning which certainly provide design benefits over traditional style.


For simple programming tasks, use of procedural programming style is well suited but as the program becomes complex and software architecture becomes large, object oriented programming is suitable to create modular designs and patterns. This makes it particularly useful when you create larger programs.


There are four major benefits to object-oriented programming:

  • Encapsulation: in OOP, you bundle code into a single unit where you can determine the scope of each piece of data.
  • Abstraction: by using classes, you are able to generalize your object types, simplifying your program.
  • Inheritance: because a class can inherit attributes and behaviors from another class, you are able to reuse more code.
  • Polymorphism: one class can be used to create many objects, all from the same flexible piece of code.



Languages evaluation criteria

https://www.cs.scranton.edu/~mccloske/courses/cmps344/sebesta_chap1.html


Readability Writability Reliability Cost Other criteria

This refers to the ease with which programs (in the language under consideration) can be understood. This is especially important for software maintenance.

  • Simplicity:
  • Orthogonality:
  • Data Types:
  • Syntax Design:

This is a measure of how easily a language can be used to develop programs for a chosen problem domain.

  • Simplicity and Orthogonality:
  • Support for Abstraction:
  • Expressivity:

This is the property of performing to specifications under all conditions.

  • Type Checking:
  • Aliasing:

The following contribute to the cost of using a particular language:

  • Training programmers: cost is a function of simplicity of language
  • Writing and maintaining programs: cost is a function of readability and writability.
  • Compiling programs: for very large systems, this can take a significant amount of time.
  • Executing programs: Having to do type checking and/or index-boundary checking at run-time is expensive. There is a tradeoff between this item and the previous one (compilation cost), because optimizing compilers take more time to work but yield programs that run more quickly.
  • Language Implementation System: e.g., Java is free, Ada not
  • Lack of reliability: software failure could be expensive (e.g., loss of business, liability issues)
  • Portability: the ease with which programs that work on one platform can be modified to work on another. This is strongly influenced by to what degree a language is standardized.
  • Generality: Applicability to a wide range of applications.
  • Well-definedness: Completeness and precision of the language's official definition.



Imperative versus declarative code

https://medium.com/front-end-weekly/imperative-versus-declarative-code-whats-the-difference-adc7dd6c8380



Imperative paradigm

Procedural and object-oriented programming belong under imperative paradigm that you know from languages like C, C++, C#, PHP, Java and of course Assembly.

Your code focuses on creating statements that change program states by creating algorithms that tell the computer how to do things. It closely relates to how hardware works. Typically your code will make use of conditinal statements, loops and class inheritence.

Example of imperative code in JavaScript is:

class Number {

    constructor (number = 0) {
        this.number = number;
    }
  
    add (x) {
        this.number = this.number + x;
    }
    
}

const myNumber = new Number (5);
myNumber.add (3);
console.log (myNumber.number); // 8



Declarative paradigm

Logic, functional and domain-specific languages belong under declarative paradigms and they are not always Turing-complete (they are not always universal programming languages). Examples would be HTML, XML, CSS, SQL, Prolog, Haskell, F# and Lisp.

Declarative code focuses on building logic of software without actually describing its flow. You are saying what without adding how. For example with HTML you use to tell browser to display an image and you don’t care how it does that.


Example of declarative code in JavaScript is:

const sum = a => b => a + b;
console.log (sum (5) (3)); // 8



Names - Variables

A name is a string of characters used to identify some entity in a program. Variable names are the most common names in the programs.

  • Are names case sensitive?
  • Length?
  • etc...


Names with special characters:

  • PHP: All variable names must begin with dollar signs
  • Perl: All variable names begin with special characters, which specify the variable's type
  • Ruby: Variable names that begin with @ are instance variables; those that begin with @@ are class variables


Case sensitivity names:

  • Names in the C-based languages are case sensitive. Not in others languages.



Variables

A variable is an abstraction of a memory cell.

Variables can be characterized as a sextuplet (six parts) of attributes:

  • Name
  • Address
  • Value
  • Type
  • Lifetime
  • Scope


Address: The memory address with which it is associated.

  • A variable may have different addresses at different times during execution.
  • A variable may have different addresses at different places in a program.
  • If two variable names can be used to access the same memory location, they are called aliases.
  • Aliases are created via pointers, reference variables, C and C++ unions
  • Two pointer variables are aliases when they point to the same memory location. The same is true for reference variables.
  • Aliases are harmful to readability (program readers must remember all of them).


Type: Determines the range of values of variables and the set of operations that are defined for values of that type; in the case of floating point, type also determines the precision

For example, the int type in Java specifies a value range of -2147483648 to 2147483647


Value: The value of a variable is the contents of the memory cell or cells associated with the variable:

  • The l-value of a variable is its address
  • The r-value of a variable is its value



Object-Oriented Paradigm


Difference Between Static and Dynamic Binding

https://techdifferences.com/difference-between-static-and-dynamic-binding.html



C++ Inheritance

https://www.w3schools.com/cpp/cpp_inheritance.asp

https://www.tutorialspoint.com/cplusplus/cpp_interfaces.htm



Reflection

A programming language that supports reflection allows its programs to have runtime access to their types and structure and to be able to dynamically modify their behavior

  • The types and structure of a program are called metadata
  • The process of a program examining its metadata is called introspection
  • Interceding in the execution of a program is called intercession


Uses of reflection for software tools:

  • Class browsers need to enumerate the classes of a program
  • Visual IDEs use type information to assist the developer in building type correct code
  • Debuggers need to examine private fields and methods of classes
  • Test systems need to know all of the methods of a class


Downsides of Reflection:

  • Performance costs
  • Exposes private fields and methods
  • Voids the advantages of early type checking
  • Some reflection code may not run under a security manager, making code nonportable



Reflection in Java

  • Limited support from java.lang.Class
  • Java runtime instantiates an instance of Class for each object in the program
  • The getClass method of Class returns the Class object of an object
float[] totals = new float[100];
Class fltlist = totals.getClass();
Class stg = "hello".getClass();
  • If there is no object, use class field:
Class stg = String.class;
  • Class has four useful methods:
getMethod searches for a specific public method of a class
getMethods returns an array of all public methods of a class
getDeclaredMethod searches for a specific method of a class
getDeclaredMethods returns an array of all methods of a class
The Method class defines the invoke method, which is used to execute the method found by getMethod



Some tutorials


Examples from Introduction to Programming Using Python 3

http://www.cs.armstrong.edu/liang/py/ExampleByChapters.html



C++ tutorial

http://www.cplusplus.com/doc/tutorial/program_structure/