CCT College Dublin Computing • IT • Business

Network Management & High Availability

Group Justification report – Part D

Greg South

Ana Renaux Morais – 2016266

Ana Paula Neves Ferreira – 2016371

Adelo Vieira – 2017279

April 2019 Dublin, Ireland

Part 4: Group Justification Report	3
Addresses Table	4
Main Dublin Office	6
WAN	11
Galway office	12

Part 4: Group Justification Report Justify the design choices you made in Part 3. Use screen shots to provide key samples of why you did things for your implemented parts a) -j (in part 3 above). Note: Five additional marks can be scored if other best practice configuration and security is completed in part 3 and documented in part 4.

To make the decision of the more suitable network design for the new data center of Dublin Computer School (DCS), we consider the following specification provided in the description of the project:

- The fact that the business is home grown in Dublin and the organization is expanding rapidly both in Dublin and in many sites around Ireland,
- The growth expected by the Infrastructure Manager,
- The need of a new Moodle system and a CRM system for the Marketing department

We can see that Dublin Computer School (DCS) is, without any doubt, expecting a significant growth for the next years. Therefore, based on this fact, and after evaluating the budget, we decided to go for an ambitious design that ensure not only availability and reliability but also scalability of the network. We have to take into consideration that this Data Center is going to be used for all the sites around Ireland, where the company is also expecting growing.

Addresses Table

	Device	Interface	IP Address	Subnet Mask	Default Gateway	Comments
	R1	G0/1.1	172.16.1.1	255.255.255.0		
		G0/1.10	172.16.10.1	255.255.255.0		
		G0/1.20	172.16.20.1	255.255.255.0		
		G0/1.30	172.16.30.1	255.255.255.0		
		G0/1.40	172.16.40.1	255.255.255.0		
		G0/.1.99	172.16.99.1	255.255.255.0		
		S0/0/0 DCE	10.16.1.1	255.255.255.252		
		S0/0/1	10.16.2.1	255.255.255.252		
		S0/1/0 DCE	10.16.3.1	255.255.255.252		
	MS1	VLAN 99	172.16.99.11	255.255.255.0		Root primary for all VLANs
	MS2	VLAN 99	172.16.99.12	255.255.255.0		Root secondary for VLAN 1, 10, 20
	MS3	VLAN 99	172.16.99.13	255.255.255.0		Root secondary for VLAN 30, 40, 99
	S1	VLAN 99	172.16.99.21	255.255.255.0		
	S2	VLAN 99	172.16.99.22	255.255.255.0		
	S3	VLAN 99	172.16.99.23	255.255.255.0		
	S4	VLAN 99	172.16.99.24	255.255.255.0		
Dublin	Server1	G0 (vlan99)	172.16.99.80	255.255.255.0	172.16.99.1	
		G1 (vlan99)				
	Server2	G0 (vlan99)	172.16.99.82	255.255.255.0	172.16.99.1	
		G1 (vlan99)				
	PC1	NIC (vlan10)	172.16.10.51	255.255.255.0	172.16.10.1	
	PC2	NIC (vlan20)	172.16.20.52	255.255.255.0	172.16.20.1	
	PC3	NIC (vlan30)	172.16.30.53	255.255.255.0	172.16.30.1	
	PC4	NIC (vlan40)	172.16.40.54	255.255.255.0	172.16.40.1	
	Wireless router0	Internet setup	172.16.10.101	255.255.255.0	172.16.10.1	
		Network setup	172.16.50.1	255.255.255.0		
	Laptop1					
	Laptop2					

		S/0/0/0	10.16.1.2	255.255.255.252		
Limerik	R2	S/0/0/1	10.16.4.1	255.255.255.252		
		G0/0	172.18.1.1	255.255.255.0		
	PC7	NIC	172.18.1.57	255.255.255.0	172.18.1.1	
-			1			
		S0/0/1	10.16.4.2	255.255.255.252		Standby router in HSBP
	R3	S0/1/1	10.16.5.1	255.255.255.252		Slow nath
		G0/1	172.17.1.1	255.255.255.0		Slow path
		S0/0/0				
	R4	DCE	10.16.6.1	255.255.255.252		Active router in HSRP
Galway		G0/0	172.17.1.2	255.255.255.0		(Because the other path is slow)
	Switch0	VLAN 1	172.17.1.6	255.255.255.0	172.17.1.254 (virtual IP for HSRP) 172.17.1.1	
	Switch1	VLAN 1	172.17.1.7	255.255.255.0	172.17.1.254 (virtual IP for HSRP) 172.17.1.2	
	PC5	NIC	172.17.1.55	255.255.255.0	172.17.1.254 (virtual IP for HSRP) 172.17.1.1	
	PC6	NIC	172.17.1.56	255.255.255.0	172.17.1.254 (virtual IP for HSRP) 172.17.1.2	
-						
		S0/0/0	10.16.6.2	255.255.255.252		
		S0/0/1				
Cork	R5	DCE	10.16.2.2	255.255.255.252		
		G0/0	172.19.1.1	255.255.255.0		
	PC8	NIC	172.19.1.58	255.255.255.0	172.19.1.1	
•						
	R6	S0/1/0	10.16.3.2	255.255.255.252		
Sligo		S0/1/1				
		DCE	10.16.5.2	255.255.255.252		
		G0/0	172.20.1.1	255.255.255.0	c	
	PC9	NIC	172.20.1.59	255.255.255.0	172.20.1.1	

Main Dublin Office

As we have already mentioned, in the Dublin LAN we are going to place the new Data Center; but also, this network has to be designed to provided end user devices communication (Wired and Wireless).

In general, our design is based on the concepts described in the «Campus LAN and Wireless LAN Design Guide» of Cisco [1]. We built a hierarchical Three-Tier Design (See Figure2): Core, Distribution and Access layers.

At the beginning of the project, we though a Two-Tier Design was the most suitable option, but after consider many factors, the expected growing of the network tipped the scale in favour of the Three-Tier Design (See Figure 1 and 2).

Figure 1 - Two-tier design Distribution layer functioning as collapsed core

Figure 2 - Three-tier design with a network-services distribution layer

In (Figure 3) see we show the design for the Dublin network. Our design is composed by:

- A layer 3 switch in the core.
- Two layer 3 distribution switches.
- Four access switches.

Figure 3 - Dublin Office Network

VLANs

We created 4 VLANs:

- VLAN10 (Student)
- VLAN20 (Marketing)
- VLAN30 (HR)
- VLAN40 (Finance)
- VLAN99 (Management)

We perform the following settings:

- We configure the management interface (VLAN99) in every switch with an IP address
- 802.1Q Trunk Between the Switches (Manually configuration)
- In the access switches, we configured access ports for the end user devices and servers and assigned VLANs to the correct switch interfaces (See Figure 3). The server's interfaces were assigned to the Management VLAN99.

Rapid spanning tree between switches

In our implementation, we made sure root bridge is in a suitable position. To do so, we manually configuring priority to influence the root election:

- We placed the root bridge in to core of our design for all VLANs
- We placed the root secondary in the distribution level of the network and configure Load Balancing sharing the root secondary between the 2 distribution switches.

```
MS1(config)#spanning-tree vlan 1,10,20,30,40,99 root primary
MS2(config)#spanning-tree vlan 1,10,20 root secondary
MS3(config)#spanning-tree vlan 30,40,99 root secondary
```

With this configuration, RSTP is avoiding redundant by blocking port mostly in the access layer.

Because we did load balancing sharing the root secondary between the 2 distribution switches, and because we are doing «Per-Vlan rapid spanning tree», the port blocked would depend on the VLAN. For example, if we consider **S4**. The rapid spanning tree protocol is blocking the **F0/18** port for the VLANs where the **root secondary** is **MS2**. However, for the VLANs where the **root secondary** is **MS2**. However, for the VLANs where the **root secondary** is blocking the **Fa0/14** port. That is why all the ports are shown in green in our network (none of the port in blocked for all VLANs) (See Figures 4 and 5).

Figure 4 - Port Blocked Per-Vlan rapid spanning tree

		S4	
Physical Cor	nfig CLI		
		IOS Command Line Interface	
VLAN0020			-
Spanning t	ree enabled	protocol rstp	
ROOL ID	Address	000A.F379.2233	
		28 14 (Part Bab arrat 0 (14)	
	Hello Time	2 sec Max Age 20 sec Forward Delay 15 sec	
Bridge ID		32788 (priority 32768 sys-id-ext 20)	
	Address	0001.64D2.124C	
	Aging Time	20 Sec Max Age 20 Sec Forward beray 15 Sec	
Interface		s Cost Prio.Nbr Type	
Fa0/14	Root FW	D 19 128.14 P2p	
Fa0/18	Altn BL	K 19 128.18 P2p	
VLAN0030			
Spanning t	ree enabled	protocol rstp 24606	
NOOC ID	Address	000A.F379.2233	
	Port Hello Time	18(FastEthernetU/18) 2 sec Max Age 20 sec Forward Delay 15 sec	=
Bridge ID	Priority	32798 (priority 32768 sys-id-ext 30)	
	Hello Time	2 sec Max Age 20 sec Forward Delay 15 sec	
	Aging Time		
Interface		s Cost Prio.Nbr Type	
Fa0/14	Altn BL	K 19 128.14 P2p	
Fa0/18	Root FW	D 19 128.18 P2p	-
		Conv)acto
		Сору	aste

Figure 5 - Port Blocked Per-Vlan rapid spanning tree

Configuring 802 1Q trunk-based inter-VLAN routing

No key decisions had to be taken in this part, we just configure 802 1Q trunk-based inter-VLAN routing to provide routing for our multiple VLANs. You can verified all IP addresses and interfaces configured in the Addressing table.

Wireless access for a GUEST wifi network

The GUEST wifi network was configured using a wireless rourters attached to one of the access switches. In (Figure 6) we show the configuration performed. We attached the wireless router to VLAN10 and created a new wifi network. A DHCP server was also enable in the wireless router so the devices were able to request an IP via DHCP (Figure 7)

Some security configurations were also performed:

- We configured a passphrase for the GUEST network: duboffice2019
- Enable encryption.

	Wireless Router0					
Physical Config GUI						
Internet	Static IP	▲ Help				
Connection type	Internet IP Address: 172. 16. 10. 101					
	Subnet Mask: 255. 255. 255. 0					
	Default Gateway: 172. 16. 10. 1					
	DNS 1: 0.0.0					
	DNS 2 (Optional): 0.0.0.0					
	DNS 3 (Optional): 0.0.0.0					
Optional Settings	Host Name:	=				
(required by some	Domain Name:					
providers)	MTU: \$ Size: 1500					
Network Setup						
Poutor IP	IP Address: 172. 16. 50. 1					
Kouter IP	Subnet Mask: 255.255.255.0 😫					
DHCP Server Settings						
	Server:					
	Start IP Address: 172 16 50 100					
	Maximum number					
	50	•				

Figure 6 - Wireless Router Configuration

			Laptop2	e 🛛 😣
Physical	Config Deskto	Custom Interfac	e	
	Configurativ			
IP C	Configuration	511		
• D	нср (Static	DHCP request successful.	
IP A	ddress	172.16.50.101		
Subr	net Mask	255.255.255.0		
Defa	ult Gateway	172.16.50.1		
DNS	Server	0.0.0		
IPve	5 Configuration			
0 D	HCP O Auto Con	ifig 💿 Static		
IPv6	Address			
Link	Local Address	FE80::230:A3F	F:FEAC:7BAB	or
IPv6	Gateway			
IPv6	DNS Server			
8				
				▼ ▼

Figure 7 - DHCP Request From Laptop2

<u>WAN</u>

We created a WAN network connecting a total of 5 sites: Dublin, Galway, Limerick, Cork and Sligo. You can see the IP addresses in the Addressing table. They correspondent to the 10.0.0.0 network.

We make sure to include redundant paths between Dublin and Galway, which is the main concern of our WAN.

We configured OSPF Routing Protocol. OSPF is a widely used protocols with one of the lower Administrative Distance (110). That is why, in case of multiple routing protocols configured in a router (such as RIP or IS-IS), OSPF would be the default one and used to route packets. OSPF is able to determine the shortest path to a destination by adding the costs of each path to reach a destination.

Galway office

For the Galway network as it does not have much resources nor have to be a considerable network a simpler design would fit best also right now the company is concentrating in the Dublin network.

In the case this network, where we had to do a HRSP also known as Hot-Standby Router Protocol, this is a is managing fault redundancy at the network gateway by routing traffic directed from one router to another on the network in the event of an outbreak.

For example, the main gateway, L3 switch, or router will fail and be down. In this case, the secondary gateway will take action and assume the role of leaving the network. We chose to use only two routers as we found unnecessary the usage of 3 in order to do the HRSP and to connect to the other networks.

If the first or active router (R4) fails, the standby router (R3) takes over as the active router. If the standby router fails or becomes the active router, another router is elected as the standby router, for this reason the HRSP creates a redundancy on the gateways for all end devices.

Figure 9 - Galway Office Network

Reference

[1] Cisco (2018) Campus LAN and Wireless LAN Design Guide. Available at: https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/Campus/CVD-Campus-LAN-WLAN-Design-Guide-2018JAN.pdf).