
Web Development
Lecture 7 - Dynamic Content

Reminders

Main Assignment Details posted to Moodle (top of page)

- Delivery date 15th Dec.

CA Moodle Quiz 14th Nov. Duration 1 Hour. Class
continues after quiz.

Watch out for practice quiz in next week’s moodle section.

Dynamic vs Static Web Pages

● Consider if you were to generate a full page for every
single Amazon product, they would be next to impossible
to manually manage

● Pages would get corrupt, lost, mistagged, damaged, etc
● Given that all of them look the same, and the data/content

is different, we can look at the notion of a template

● If we use a template, we just fill in the blanks, and alter
some portions depending on what we need.

Header/Footer standardisation

● In any set of company pages, we typically have a standard set of
header and footers that are the same on all or most pages.

● There can be other elements as well, not just headers and footers

● They can include common side bars, images, elements for
different pages

● We will look at the example of headers and footers, and these can
be generalised to other forms yourself

Page Layout

Header

Footer

Side-Bar Content for
individual pages

Justification for single header/footer
● We are going to create a single file to hold the code for the header and a

separate one for the footer

● We then call these on every page that has a header and/or footer

● The idea is that we only have one place to change the code if we decide to
change the header or footer, rather than make changes on every page in the
site

● This is the same basic idea as creating functions for code reuse rather than
rewriting the same code every time

● Particularly useful for menus as they are generally common across an
application

How to set this up
● To do this, we need separate files for each bit of code that will be

common to all files/pages. Create folder products under htdocs

● For now we will create a header, footer, index page and second
page

○ header.php

○ footer.php

○ index.php

○ second.php

● We will use the index and second page to show the same content on
both pages

header.php

● We put whatever
should be in every
header page in here,
in our case,

● Stylesheets

● Menu

● Page title

<!DOCTYPE html>
<html>
<head>
</head>
<body>
<link rel="stylesheet" href="menu.css">
<link rel="stylesheet" href="style.css">

 Home
 New
 List
 About

menu.css

● Create menu.css in
the same folder.

● This will make the
menu as a horizontal
menu

ul {
 list-style-type: none;
 margin: 0;
 padding: 0;
 overflow: hidden;
 background-color: #333;}
li {
 float: left;}
li a {
 display: inline-block;
 color: white;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;}
li a:hover {
 background-color: #111;}

footer.php

● There is a lot more that we could have in
our footer, some pages have very little,
just contact info, some have a lot more
links, as are appropriate for the specific
business requirements

● In our case, we just define a piece of text
that says

© CCT College 2017

<div id=’footer’ >

© CCT
College 2017
</div>
</body>
</html>

HTML special characters,
for more see here

https://www.w3schools.com/html/html_symbols.asp

Include function
To add the header and footer to another page we can use the php

include() function.

We just pass as a parameter the file we want included on the page

This can be just a snippet of html code, like we’ve seen or php code
or a mixture of both

index.php

// include the header page
<?php
include('header.php');
?>

<h1>Welcome To our Products App</h1>
<p>All sorts of normal content go in here</p>

// include the footer page
<?php

include('footer.php');
?>

secondpage.php

// include the header page
<?php

include('header.php');
?>

<h1>Second Page</h1>
<p>All sorts of normal content go in here</p>

// include the footer page
<?php

include('footer.php');
?>

Dynamic Page Content - List of Products

● Now, we want to generate pages based on database
entries

● That is, for some online sites that have a large database
of products, we don’t want to write a separate page for
each product, rather, we want to generate the page, or
fill in a template based on what comes back out of the
database

● Even if the number of products is quite small, we should
not hardcode a list of products or hardcode the individual
pages

Dynamic Page Content - List of Products

● We’re going to create a Products application

● Create - add new product to database (INSERT)
● Read - read product from database (SELECT)
● Update- edit existing product on database (UPDATE)
● Delete- remove product from database (DELETE)

Let’s get set up to try this
● Start your xampp server and associated MySQL Server
● Open your Heidi or phpMyAdmin and create a new table:
● Make sure you have selected a database first (wdtest)

CREATE TABLE Products(id INT NOT NULL AUTO_INCREMENT,
product_name VARCHAR(50) NOT NULL,
product_description VARCHAR(100),
cost DECIMAL(8,2),
PRIMARY KEY(id));

phpMyAdmin

To start phpMyAdmin on xampp

Click Admin button

To Run
Query

Select This tab

phpMyAdmin

Or via browser. localhost/phpmyadmin

Add some data
● Now that we have a table, let’s add some data to the table
● Specifically some products
● Add 6 - 7 products to the table, either via SQL statement or ia the INSERT

tab
● Eg○ 1

○ 2
○ 3
○ 4
○ 5
○ 6
○ 7

phone
tablet
laptop
desktop
monitor
mouse
keyboard

Some amazing phone An
even better tablet Snazzy
laptop
Big fancy gaming machine
32 inch flat screen
standard mouse
wireless keyboard

235.43
452.00
1234.54
2345.43
345.32
9.99
20.99

insert into products (product_name,product_description,cost)
 values('pc','Laptop Lenovo',789.00);

Double check
● Double check that the data is actually in there:

SELECT * FROM Products;

Products.php
● First, let’s create a page that will show our list of products from

the database.

● Essentially,

○ we want to call the database

○ use our select statement to get the information from the
database and

○ display this information to the page

● Later we will link these list entries with the specific product pages
● If you haven’t done it already. Let’s create a folder under htdocs

folder called products where we will put our new files

db.php
<?php

try{
$host ='127.0.0.1';
$dbname = 'wdtest';
$user = 'root';
$pass = '';
$DBH = new PDO("mysql:host=$host;dbname=$dbname",$user,$pass);

}catch (PDOException $e) {echo $e->getMessage();}
?>

Create this file and
save in products folder
and we will include it in
all our files

db.php
<?php

try{
$host = '127.0.0.1';
$dbname = 'wdtest';
$user = 'root';
$pass = '';
$port=3307;
$DBH = new
PDO("mysql:host=$host;dbname=$dbname;port=$port",$user,$pass);

}catch (PDOException $e) {echo $e->getMessage();}
?>

If you need to
change the port
number

PDO revisited

$DBH = new PDO(“mysql:host=$host;dbname=$dbname”,$user,$pass);

$DBH is an instance of the class PDO

$DBH now has a number of functions (or
methods) available to it including the prepare()
function

PDO prepare()
Prepares an SQL statement to be executed by the
PDOStatement::execute() method.

The SQL statement can contain zero or more named (:name) or question
mark (?) parameter placeholders for which real values will be substituted
when the statement is executed

$stmt = $DBH ->prepare("insert into users
 (username, email, password)
 values (?, ?, ?)");Arrow notation allows

access to function (or
methods) of the
instance of the class

Positional
Placeholders

http://php.net/manual/en/pdostatement.execute.php

PDO Statement Class
The prepare function (or method) returns an instance of the class
PDOStatement

 PDOStatement has a number of methods we can use, including

bindParam() - bind parameter to placeholder in prepare statement
execute() - execute sql statement

In the previous example $stmt is now an instance of the
PDOStatement class

http://php.net/manual/en/pdostatement.execute.php
http://php.net/manual/en/pdostatement.execute.php
http://php.net/manual/en/pdostatement.execute.php

PDO Statement Class
$stmt = $DBH->prepare("select * from users where username = ?");
$stmt->bindParam(1, $username);
$stmt->execute();

Once the sql statement has been executed we can use other
functions to return data from the sql execution. Generally we are
returning rows of data in an associative array, where the key is the
database table column name and the value is the column data.

$stmt->fetch() - return single row from a query
$stmt->fetchAll() - return all rows in a query

Products.php

<?php
// create the connection
include('db.php');
// select the correct table
$stmt = $DBH->prepare("SELECT * FROM Products");
$stmt->execute();
// get the rows and put it in a variable
$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);
foreach($rows as $row){

echo $row['id'].", ".$row['product_name'].", ".$row['product_description']."
";
}

?>

errordb.php

We have been having problems with inserts not working and not getting any
useful errors. To remedy this we can add the following after the ->execute() of
our SQL statement

<?php
$arr = $stmt->errorInfo();
if (isset($arr[2])) {// we have an error
 echo "
 Database Error Code: ".$arr[0];
 echo "
 Driver Error Code: ".$arr[1];
 echo "
 Database Error Message: ".$arr[2];
 exit();
}

?>

Save as
errordb.php and
include it in all our
php files after
where we execute
sql query

Products.php

<?php
// create the connection include(‘db.php’);
// select the correct table
$stmt = $DBH->prepare(“SELECT * FROM Products”);
$stmt->execute();
include('errordb.php');
// get the rows and put it in a variable
$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);
foreach($rows as $row){

echo $row[‘id’].”, “.$row[‘product_name’].”, “.$row[‘product_description’]."
";
}

?>

Add this line.
Lets test this,
Change the table
name from Products
to xyz and reload in
browser. Observer
the error.

Products List vs Products Page

● We have the list of products, now we want to see a specific product
page

● Typically, our database would have more fields to really fill out a
product page, but let’s just show the bare bones, and build it up
from there

● We will use the information as is in the database to populate a
standard product page

● Every product page will look the same, with different data filled into
specific areas of the page, again, like a template

Dynamic Products Pages

● In our database we use an id to uniquely identify our products

● We are going to use this id to call up the information for our
individual product to fill in the product page

● To do this we can pass our id from our products list page to the
product view page

● Up to now we have passed data from page to page via a form or
php sessions etc, this time we’re going to link to the product from
the products list via a href link passing the id as a parameter

viewProduct.php
● We pass our data from one page to the next, in this case via the URL

● Remember we had two methods of passing data from one form to the next?

○ GET

○ POST

● The POST encoded the information in the HTTP request whereas the GET

sends it via the URL

● Using the GET allows us to send data directly via the URL

● We just want to send the id via the URL as a parameter

http://localhost/products/viewProduct?id=1

http://localhost/products/viewProduct?id=1

Passing Parameters via the URL
http://localhost/products/viewProduct?id=1

After the question mark are the parameters

● In this case we are sending the value 1 in the variable id
● If we wanted to send multiple parameters we would

separate them with an &

http://localhost/products/viewProduct?id=1

viewProduct.php
Just to make sure it works:

<?php
$pid = $_GET['id'];
echo $pid;

?>

Create a file with this
content and save as

viewProduct.php

viewProduct.php
● So we know we can pass the id of the clicked link through to the

product page and print it

● Now, we want to use that id to get the specific info out of the
database and actually use it

● This time, we are not doing a general SELECT * call to the database,
instead, we are doing a SELECT * FROM Products WHERE …

● We know we will only get one result back as we are using the Unique
Primary Key to get at the data

viewProduct.php
<?php

$pid = $_GET['id'];
include('db.php');
$stmt = $DBH->prepare("SELECT * FROM Products WHERE id= :pid");
$stmt->bindValue(':pid', $pid);
$stmt->execute();
include('errordb.php');
$row = $stmt->fetch(PDO::FETCH_ASSOC);
echo $row['id'].", ".$row['product_name'].", ".$row['product_description'];
echo ", ".$row['cost']."
";

?>

products.php

<?php
// create the connection
include('db.php');
// select the correct table
$stmt = $DBH->prepare("SELECT * FROM Products");
$stmt->execute();
include('errordb.php');
// get the rows and put it in a variable
$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);
foreach($rows as $row){

echo $row['id'].",".$row['product_name'].",".$row['product_description'].
"View"."
";

}
?>

Create a link to
viewProduct.php with
product id

viewProduct.php

<?php include('header.php'); ?>
<h2>%%Put Title Here%%</h2>

<?php
// existing code
?>
<?php include 'footer.php'; ?>

Add header and
footer to
viewProduct.php and
products.php.

products.php
$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);
echo "<table>";
echo "<tr><th>Id</th><th>Name</th><th>Description</th></tr>";
 foreach($rows as $row){
 echo "<tr>";

echo "<td>";
echo $row['id'];
echo "</td>";
echo "<td>";
echo $row['product_name'];
echo "</td>";
echo "<td>";
echo $row['product_description'];
echo "</td>";
echo "<td>";
echo "View";
echo "</td>";
echo "</tr>";

}
echo "</table>";

Tidy things up with
a table. Replace
foreach {} with red
code

Adding Style file to Header
<!DOCTYPE html>
<html>
<head>
</head>
<body>
<link rel="stylesheet" href="menu.css">
<link rel="stylesheet" href="style.css">

Tidy things up with
some css styling.
Create style.css file
in same folder

table {
 border: 1px solid black;
}
th, td {
 padding: 15px;
 text-align: left;
}
th{
background-color: mediumseagreen;
color: white }

header.php, created
earlier

deleteProduct.php

We’re going to add a page to delete a product .

To do this we’re going to populate a form with data from our database table
using the id of the product selected.

When we have deleted we will return to the products.php file

So we’ll start by creating our form and adding data to it from the table

We’ll make the input fields readonly so the can’t be amended. Using the
input attribute readonly

deleteProduct.php

<h2>Delete Product</h2>
</br>
<form class='form-style' action="deleteProduct.php" method="post">
Product: <input type="text" name="product" value="<?php echo $product; ?>"
readonly/>
Description: <input type="text" name="description" value="<?php echo
$product_desc; ?>" readonly/>
Cost: <input type="text" name="cost" value="<?php echo $cost; ?>" readonly/>
<input type="submit" name="submit" value="Delete" class='button'/>
</form>

deleteProduct.php
<?php
$pid = $_GET['id']; // from link in products.php
include('db.php');
$stmt = $DBH->prepare("SELECT * FROM Products WHERE id= :pid");
$stmt->bindValue(':pid', $pid);
$stmt->execute();
include('errordb.php');
$row = $stmt->fetch(PDO::FETCH_ASSOC);
$product = $row['product_name'];
$product_desc = $row['product_description'];
$cost = $row['cost'];
?>

Add php code
above html form

deleteProduct.php
Add a few lines to products.php file to link to the delete page , directly
under the viewProduct link

echo "<td>";
echo "Delete";
echo "</td>";

Test the link in the browser

deleteProduct.php
We need to distinguish between a GET and a POST in the file. When we
click the link in products.php we are doing a GET.

When we submit the form we are doing a POST

When we see a post we want to delete the row from the table using the
DELETE sql method using the data from the form

We need to add a line in the form to store the id of the row we are going
to delete. We do not want to display this id on the form.

<input type="hidden" name="pid" value="<?php echo $pid; ?>" />

deleteProduct.php

Our HTML now looks like<html>
<body>
<h2>Delete Product</h2>
</br>
<form class='form-style' action="deleteProduct.php" method="post">
Product: <input type="text" name="product" value="<?php echo $product; ?>"
readonly/>
Description: <input type="text" name="description" value="<?php echo
$product_desc; ?>" readonly/>
Cost: <input type="text" name="cost" value="<?php echo $cost; ?>" readonly/>
<input type="hidden" name="pid" value="<?php echo $pid; ?>" />
<input type="submit" name="submit" value="Delete" class='button'/>
</form>
</body>
</html>

deleteProduct.php The GET part of php code

<?php
include('db.php'); //note we moved this line
if ($_GET){

$pid = $_GET['id'];
$stmt = $DBH->prepare("SELECT * FROM Products WHERE id= :pid");
$stmt->bindValue(':pid', $pid);
$stmt->execute();
include('errordb.php');
$row = $stmt->fetch(PDO::FETCH_ASSOC);
$product = $row['product_name'];
$product_desc = $row['product_description'];
$cost = $row['cost'];

}
?>

deleteProduct.php The POST part of php

if ($_POST) {
 $pid = $_POST['pid']; // from hidden input field

$stmt = $DBH->prepare("DELETE FROM Products WHERE id= :pid");
$stmt->bindValue(':pid', $pid);
$stmt->execute();
include('errordb.php');
header("Location: products.php");

}

Add directly after the if ($_GET) { }

deleteProduct.php

Add the header and footer php code to deleteProduct.php
as before.

Test the app as it stands

Homework

To complete our application we need an UPDATE and
CREATE option.

There is an exercise on moodle asking you to do this with
the steps you need to complete.

I’ll post a solution file by next tuesday.

Homework

Watch out for additional tutorials in the next weeks moodle
section

Practice Quiz

Watch out for practice moodle quiz. Top of moodle page.
Hopefully by next tuesday.

